首頁»Python»大數據全棧式開發語言 – Python

大數據全棧式開發語言 – Python

來源:insights.thoughtworkers.org 發布時間:2015-08-04 閱讀次數:

  前段時間,ThoughtWorks在深圳舉辦一次社區活動上,有一個演講主題叫做“Fullstack JavaScript”,是關于用JavaScript進行前端、服務器端,甚至數據庫(MongoDB)開發,一個Web應用開發人員,只需要學會一門語言,就可以實現整個應用。

  受此啟發,我發現Python可以稱為大數據全棧式開發語言。因為Python在云基礎設施,DevOps,大數據處理等領域都是炙手可熱的語言。

領域 流行語言
云基礎設施 Python, Java, Go
DevOps Python, Shell, Ruby, Go
網絡爬蟲 Python, PHP, C++
數據處理 Python, R, Scala

  就像只要會JavaScript就可以寫出完整的Web應用,只要會Python,就可以實現一個完整的大數據處理平臺。

 云基礎設施

  這年頭,不支持云平臺,不支持海量數據,不支持動態伸縮,根本不敢說自己是做大數據的,頂多也就敢跟人說是做商業智能(BI)。

  云平臺分為私有云和公有云。私有云平臺如日中天的OpenStack,就是Python寫的。曾經的追趕者CloudStack,在剛推出時大肆強調自己是Java寫的,比Python有優勢。結果,搬石砸腳,2015年初,CloudStack的發起人Citrix宣布加入OpenStack基金會,CloudStack眼看著就要壽終正寢。

  如果嫌麻煩不想自己搭建私有云,用公有云,不論是AWS,GCE,Azure,還是阿里云,青云,在都提供了Python SDK,其中GCE只提供Python和JavaScript的SDK,而青云只提供Python SDK。可見各家云平臺對Python的重視。

  提到基礎設施搭建,不得不提Hadoop,在今天,Hadoop因為其MapReduce數據處理速度不夠快,已經不再作為大數據處理的首選,但是HDFS和Yarn——Hadoop的兩個組件——倒是越來越受歡迎。Hadoop的開發語言是Java,沒有官方提供Python支持,不過有很多第三方庫封裝了Hadoop的API接口(pydoop,hadoopy等等)。

  Hadoop MapReduce的替代者,是號稱快上100倍的Spark,其開發語言是Scala,但是提供了Scala,Java,Python的開發接口,想要討好那么多用Python開發的數據科學家,不支持Python,真是說不過去。HDFS的替代品,比如GlusterFS,Ceph等,都是直接提供Python支持。Yarn的替代者,Mesos是C++實現,除C++外,提供了Java和Python的支持包。

 DevOps

  DevOps有個中文名字,叫做開發自運維。互聯網時代,只有能夠快速試驗新想法,并在第一時間,安全、可靠的交付業務價值,才能保持競爭力。DevOps推崇的自動化構建/測試/部署,以及系統度量等技術實踐,是互聯網時代必不可少的。

  自動化構建是因應用而易的,如果是Python應用,因為有setuptools, pip, virtualenv, tox, flake8等工具的存在,自動化構建非常簡單。而且,因為幾乎所有Linux系統都內置Python解釋器,所以用Python做自動化,不需要系統預安裝什么軟件。

  自動化測試方面,基于Python的Robot Framework企業級應用最喜歡的自動化測試框架,而且和語言無關。Cucumber也有很多支持者,Python對應的Lettuce可以做到完全一樣的事情。Locust在自動化性能測試方面也開始受到越來越多的關注。

  自動化配置管理工具,老牌的如Chef和Puppet,是Ruby開發,目前仍保持著強勁的勢頭。不過,新生代AnsibleSaltStack——均為Python開發——因為較前兩者設計更為輕量化,受到越來越多開發這的歡迎,已經開始給前輩們制造了不少的壓力。

  在系統監控與度量方面,傳統的Nagios逐漸沒落,新貴如Sensu大受好評,云服務形式的New Relic已經成為創業公司的標配,這些都不是直接通過Python實現的,不過Python要接入這些工具,并不困難。

  除了上述這些工具,基于Python,提供完整DevOps功能的PaaS平臺,如CloudifyDeis,雖未成氣候,但已經得到大量關注。

 網絡爬蟲

  大數據的數據從哪里來?除了部分企業有能力自己產生大量的數據,大部分時候,是需要靠爬蟲來抓取互聯網數據來做分析。

  網絡爬蟲是Python的傳統強勢領域,最流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的類庫。

  不過,網絡爬蟲并不僅僅是打開網頁,解析HTML這么簡單。高效的爬蟲要能夠支持大量靈活的并發操作,常常要能夠同時幾千甚至上萬個網頁同時抓取,傳統的線程池方式資源浪費比較大,線程數上千之后系統資源基本上就全浪費在線程調度上了。Python由于能夠很好的支持協程(Coroutine)操作,基于此發展起來很多并發庫,如Gevent,Eventlet,還有Celery之類的分布式任務框架。被認為是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了對高并發的支持,網絡爬蟲才真正可以達到大數據規模。

  抓取下來的數據,需要做分詞處理,Python在這方面也不遜色,著名的自然語言處理程序包NLTK,還有專門做中文分詞的Jieba,都是做分詞的利器。

 數據處理

  萬事俱備,只欠東風。這東風,就是數據處理算法。從統計理論,到數據挖掘,機器學習,再到最近幾年提出來的深度學習理論,數據科學正處于百花齊放的時代。數據科學家們都用什么編程?

  如果是在理論研究領域,R語言也許是最受數據科學家歡迎的,但是R語言的問題也很明顯,因為是統計學家們創建了R語言,所以其語法略顯怪異。而且R語言要想實現大規模分布式系統,還需要很長一段時間的工程之路要走。所以很多公司使用R語言做原型試驗,算法確定之后,再翻譯成工程語言。

  Python也是數據科學家最喜歡的語言之一。和R語言不同,Python本身就是一門工程性語言,數據科學家用Python實現的算法,可以直接用在產品中,這對于大數據初創公司節省成本是非常有幫助的。正式因為數據科學家對Python和R的熱愛,Spark為了討好數據科學家,對這兩種語言提供了非常好的支持。

  Python的數據處理相關類庫非常多。高性能的科學計算類庫NumPy和SciPy,給其他高級算法打了非常好的基礎,matploglib讓Python畫圖變得像Matlab一樣簡單。Scikit-learn和Milk實現了很多機器學習算法,基于這兩個庫實現的Pylearn2,是深度學習領域的重要成員。Theano利用GPU加速,實現了高性能數學符號計算和多維矩陣計算。當然,還有Pandas,一個在工程領域已經廣泛使用的大數據處理類庫,其DataFrame的設計借鑒自R語言,后來又啟發了Spark項目實現了類似機制。

  對了,還有iPython,這個工具如此有用,以至于我差點把他當成標準庫而忘了介紹。iPython是一個交互式Python運行環境,能夠實時看到每一段Python代碼的結果。默認情況下,iPython運行在命令行,可以執行ipython notebook在網頁中運行。用matplotlib繪制的圖可以直接嵌入式的顯示在iPython Notebook中。
iPython Notebook的筆記本文件可以共享給其他人,這樣其他人就可以在自己的環境中重現你的工作成果;如果對方沒有運行環境,還可以直接轉換成HTML或者PDF。

 為什么是Python

  正是因為應用開發工程師、運維工程師、數據科學家都喜歡Python,才使得Python成為大數據系統的全棧式開發語言。

  對于開發工程師而言,Python的優雅和簡潔無疑是最大的吸引力,在Python交互式環境中,執行import this,讀一讀Python之禪,你就明白Python為什么如此吸引人。Python社區一直非常有活力,和NodeJS社區軟件包爆炸式增長不同,Python的軟件包增長速度一直比較穩定,同時軟件包的質量也相對較高。有很多人詬病Python對于空格的要求過于苛刻,但正是因為這個要求,才使得Python在做大型項目時比其他語言有優勢。OpenStack項目總共超過200萬行代碼,證明了這一點。

  對于運維工程師而言,Python的最大優勢在于,幾乎所有Linux發行版都內置了Python解釋器。Shell雖然功能強大,但畢竟語法不夠優雅,寫比較復雜的任務會很痛苦。用Python替代Shell,做一些復雜的任務,對運維人員來說,是一次解放。

  對于數據科學家而言,Python簡單又不失強大。和C/C++相比,不用做很多的底層工作,可以快速進行模型驗證;和Java相比,Python語法簡潔,表達能力強,同樣的工作只需要1/3代碼;和Matlab,Octave相比,Python的工程成熟度更高。不止一個編程大牛表達過,Python是最適合作為大學計算機科學編程課程使用的語言——MIT的計算機入門課程就是使用的Python——因為Python能夠讓人學到編程最重要的東西——如何解決問題。

  順便提一句,微軟參加2015年PyCon,高調宣布提高Python在Windows上的編程體驗,包括Visual Studio支持Python,優化Python的C擴展在Windows上的編譯等等。腦補下未來Python作為Windows默認組件的場景。

QQ群:WEB開發者官方群(515171538),驗證消息:10000
微信群:加小編微信 849023636 邀請您加入,驗證消息:10000
提示:更多精彩內容關注微信公眾號:全棧開發者中心(fsder-com)
網友評論(共1條評論) 正在載入評論......
理智評論文明上網,拒絕惡意謾罵 發表評論 / 共1條評論
登錄會員中心
湖北快3今天的开奖结果